Leis de Wien e de Planck[editar | editar código-fonte]


A figura ao lado mostra o espectro da radiação térmica emitida por corpos a várias temperaturas. Ao incidir sobre um corpo, parte da radiação térmica é absorvida (a), parte é refletida (r), e o resto é transmitido (t). A partir do princípio de conservação de energia, tem-se que:
- Erro de citação: Elemento
<ref>
inválido; nomes inválidos (por exemplo, são demasiados)
A Lei de Wien relaciona o comprimento de onda em que há máxima emissão de radiação de corpo negro com uma temperatura e determina que o comprimento de onda emitido diminui com o aumento da temperatura:
- x
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.
+, +
+X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
X =ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.x- TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
- X
- T l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
onde
- é o comprimento de onda (em metros) no qual a intensidade da radiação eletromagnética é a máxima;
- é a temperatura do corpo negro em Kelvin (K), e
- é a constante de proporcionalidade, chamada constante de dispersão de Wien, em Kelvin-metros (K • m).
A Lei de Planck para radiação de corpo negro exprime a radiância espectral em função do comprimento de onda e da temperatura do corpo negro e fornece a distribuição dos comprimentos de onda no espectro em função da temperatura. A maior parte da irradiação ocorre em um comprimento de onda específico, chamado de comprimento de onda principal de irradiação, que depende da temperatura do corpo. Quanto maior a temperatura, maior a frequência da radiação e menor é o comprimento de onda:
- x
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.
+, +
+X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
X =ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.x- TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
- X
- T l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
onde
- é a radiância espectral medida em J•s−1•m−2•sr−1•Hz−1
- é a frequência medida em Hertz (Hz)
- é a temperatura do corpo negro medida em Kelvin (K)
- é a constante de Planck medida em Joule por Hertz (J/Hz)
- é a constante velocidade da luz medida em metros por segundo (m/s)
- é o número de Euler
- é a constante de Boltzmann medida em Joule por Kelvin (J/K)
Relacionando com o espectro visível, devido ao comprimento de onda, objetos com temperaturas altas produzem luz de coloração próxima ao azul, enquanto objetos com temperaturas não tão altas podem gerar luz avermelhada (a faixa do espectro seguinte à visível é justamente o infravermelho). Por exemplo, um objeto vermelho quente irradia principalmente ondas longas da faixa visível do espectro (luzes avermelhada e alaranjada). Se for aquecido, passará a emitir menores comprimentos de onda (luzes azulada e esverdeada), e a distribuição das frequências faz a luz parecer branca aos olhos humanos. Esse efeito é chamado de "branco quente". Entretanto, mesmo em temperaturas superiores a 2000 K, 99% da energia irradiada está na faixa do infravermelho do espectro. Em outros casos, a matéria pode irradiar comprimentos de onda que não podem ser vistos pelo olho humano, como quando a temperatura é relativamente baixa ou extremamente alta.
Lei de Stefan-Boltzmann[editar | editar código-fonte]

A Lei de Stefan-Boltzmann estabelece que a energia total irradiada por unidade de área superficial de um corpo negro, na unidade de tempo (radiação do corpo negro), ou densidade de fluxo energético, indicada por j*, é diretamente proporcional à quarta potência da sua temperatura absoluta:
- x
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.
+, +
+X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
X =ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.x- TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
- X
- T l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
onde:
- é a energia total irradiada por um corpo negro por unidade de área, medida em Watts por metro quadrado (W / m2)
- é a temperatura do corpo em Kelvin (K)
- é a constante de Stefan-Boltzmann
A constante de Boltzmann ( ou ) é a constante física que relaciona temperatura e energia de moléculas.[1] Tem o nome do físico austríaco Ludwig Boltzmann, que fez importantes contribuições para a física e para a mecânica estatística, na qual a sua constante tem um papel fundamental. A 26ª Conferência Geral de Pesos e Medidas fixou o valor exato da constante de Boltzmann:[2]
- x
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.
+, +
+X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
X =ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.x- TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
- X
- T l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
História[editar | editar código-fonte]
Determinação experimental[editar | editar código-fonte]Embora Boltzmann tenha feito primeiro a ligação entre entropia e probabilidade, em 1877, de modo que a relação não foi expressa como uma constante antes de Max Planck fazê-lo. , com um valor preciso de 1.346×10−23 (apenas 2,5% menor que o conhecido hoje), introduzido na lei de Planck para a radiação do corpo negro, em 1900-1901.[3]
A forma mais simples de chegar à constante de Boltzmann é dividir a constante dos gases perfeitos pela constante de Avogadro.
A constante de Boltzmann relaciona assim a ideia de que, para qualquer quantidade de um gás ideal, obtemos um valor constante caso dividirmos o valor obtido a partir da multiplicação de pressão e volume pelo valor da temperatura, o ou .
x
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.
+
, +
+
X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
X =ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.x- TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
- X
- T l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
Deste modo estamos a considerar que é a quantidade de energia por mol de moléculas de gás. Ao dividir este novo valor pelo número de Avogadro obtemos a quantidade de energia contida por cada molécula de gás, de acordo com as expressões:
- ,
- x
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.
+, +
+X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
X =ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.x- TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
- X
- T l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
- (ou )
- x
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.
+, +
+X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
X =ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.x- TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
- X
- T l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
Valores da constantes de Boltzmann em unidades diferentes[editar | editar código-fonte]
Valores de | Unidades | Comentários |
---|---|---|
J/K | Unidades do SI, valor de 2017 do CODATA, na unidades do SI [1] | |
eV/K | Valores do CODATA [1] 1 electronvolt [1] | |
Hz/K | Valores do CODATA[1] h [1] | |
EH/K | R∞[1] [1] | |
erg/K | Sistema CGS, 1 erg = | |
cal/K | 1 Caloria | |
cal/°R | 1 grau de Rankine | |
ft lb]]/°R | 1 força de pés - libras | |
cm−1/K | Valor do CODATA[1] | |
kcal/(mol·K) | na forma molar, frequentemente usado em mecânica estatística, usa-se caloria termoquímica = 4.184 Joule | |
kJ/(mol·K) | na forma molar frequentemente usado em mecânica estatística. | |
em nanômetros por piconewton em 24°C, usado na Biofísica. | ||
dBW/K/Hz | em decibel watts, usado nas telecomunicações (Veja Ruído de Johnson–Nyquist) | |
bit | em bits (logaritmo com base 2), usado na Entropia da informação valor exato é | |
nat | em nats (logaritmo com base ), usado na Entropia da informação (veja Unidades de Planck) |
x
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.
+
, +
+
X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
X =ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.x- TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
- X
- T l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
Em Mecânica estatística, um ensemble microcanônico é o conjunto estatístico que é usado para representar os possíveis estados de um sistema mecânico que tem uma energia total especificada. O sistema é assumido como isolado, no sentido que o sistema não pode trocar energia ou partículas com seu ambiente, assim o valor da energia total permanece fixo enquanto o tempo passa. A energia, volume, e composição do sistema são mantidas fixas em todos os estados possíveis do sistema.
As variáveis macroscópicas do conjunto microcanônico são parâmetros físicos que influenciam a natureza dos estados internos do sistema, como o número total de partículas , o volume disponível , bem como a energia total . Em consequência, este conjunto é algumas vezes chamado de ensemble , pois cada um destes três parâmetros é uma constante no conjunto.
Em termos simples, o ensemble microcanônico é definido através da atribuição de uma probabilidade igual para cada microestado do sistema cuja energia cai dentro de um intervalo e . Para todos os outros microestados se assume probabilidade igual a zero. Seja a probabilidade de o sistema estar em um dado microestado naquele intervalo de energia. O sistema deve estar em um dado microestado, logo
.
x
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.
+
, +
+
X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
X =ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.x- TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
- X
- T l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
Se o número total de microestados com igual probabilidade é , então
x
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.
+
, +
+
X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
X =ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.x- TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
- X
- T l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
O intervalo de energia é, em seguida, reduzido em largura até que se torne infinitamente estreito, . No limite deste processo, obtém-se o conjunto microcanônico.
Na prática, o ensemble microcanônico não corresponde a uma situação experimentalmente realista. Para um sistema físico real, existe alguma incerteza na energia devido a fatores não controlados na preparação do sistema. Além da dificuldade de encontrar um análogo experimental, é difícil de realizar cálculos que satisfaçam exatamente o requisito de energia fixa. Sistemas em equilíbrio térmico com o ambiente têm incerteza na energia, e são melhor descritos usando o ensemble canônico ou o ensemble grande canônico
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.
+
, +
+
X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
X =ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.x- TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
- X
- T l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl